Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Am J Trop Med Hyg ; 108(6): 1256-1263, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37127267

ABSTRACT

Keystone orthobunyavirus (KEYV), a member of the genus Orthobunyavirus, was first isolated in 1964 from mosquitoes in Keystone, Florida. Although data on human infections are limited, the virus has been linked to a fever/rash syndrome and, possibly, encephalitis, with early studies suggesting that 20% of persons in the Tampa, Florida, region had antibodies to KEYV. To assess the distribution and diversity of KEYV in other regions of Florida, we collected > 6,000 mosquitoes from 43 sampling sites in St. Johns County between June 2019 and April 2020. Mosquitoes were separated into pools by species and collection date and site. All pools with Aedes spp. (293 pools, 2,171 mosquitoes) were screened with a real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay that identifies KEYV and other closely related virus species of what was previously designated as the California encephalitis serogroup. In 2020, screening for KEYV was expanded to include 211 pools of Culex mosquitoes from sites where KEYV-positive Aedes spp. had been identified. rRT-PCR-positive samples were inoculated into cell cultures, and five KEYV isolates from Aedes atlanticus pools were isolated and sequenced. Analyses of the KEYV large genome segment sequences revealed two distinct KEYV clades, whereas analyses of the medium and small genome segments uncovered past reassortment events. Our data documented the ongoing seasonal circulation of multiple KEYV clades within Ae. atlanticus mosquito populations along the east coast of Florida, highlighting the need for further studies of the impact of this virus on human health.


Subject(s)
Aedes , Culex , Encephalitis Virus, California , Orthobunyavirus , Animals , Humans , Florida/epidemiology , Orthobunyavirus/genetics , Polymerase Chain Reaction , Mosquito Vectors
2.
Am J Trop Med Hyg ; 107(4): 873-880, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36096408

ABSTRACT

Zika virus (ZIKV) infections occurred in epidemic form in the Americas in 2014-2016, with some of the earliest isolates in the region coming from Haiti. We isolated ZIKV from 20 children with acute undifferentiated febrile illness who were part of a cohort of children seen at a school clinic in the Gressier region of Haiti. The virus was also isolated from three pools of Aedes aegypti mosquitoes collected at the same location. On phylogenetic analysis, three distinct ZIKV clades were identified. Strains from all three clades were present in Haiti in 2014, making them among the earliest isolates identified in the Western Hemisphere. Strains from all three clades were also isolated in 2016, indicative of their persistence across the time period of the epidemic. Mosquito isolates were collected in 2016 and included representatives from two of the three clades; in one instance, ZIKV was isolated from a pool of male mosquitoes, suggestive of vertical transmission of the virus. The identification of multiple ZIKV clades in Haiti at the beginning of the epidemic suggests that Haiti served as a nidus for transmission within the Caribbean.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Child , Haiti/epidemiology , Humans , Male , Mosquito Vectors , Phylogeny , Schools
3.
Microbiol Resour Announc ; 11(9): e0044922, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35950865

ABSTRACT

Genotype 1A hepatovirus A was identified by quantitative reverse transcription-PCR and isolated from plasma from a Haitian child with acute undifferentiated febrile illness and malaise. The strain was most closely related to Brazilian strains, consistent with recognized patterns of virus movement in the Caribbean region.

4.
Nature ; 600(7887): 133-137, 2021 12.
Article in English | MEDLINE | ID: mdl-34789872

ABSTRACT

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, the emergence of coronavirus in our species has been associated with zoonotic transmissions from animal reservoirs1,2, underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae, human infections reported so far have been limited to alphacoronaviruses and betacoronaviruses3-5. Here we identify porcine deltacoronavirus strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the genes encoding Nsp15 and the spike glycoprotein. In particular, structural analysis predicts that one of the changes in the spike S1 subunit, which contains the receptor-binding domain, may affect the flexibility of the protein and its binding to the host cell receptor. Our findings highlight the potential for evolutionary change and adaptation leading to human infections by coronaviruses outside of the previously recognized human-associated coronavirus groups, particularly in settings where there may be close human-animal contact.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Deltacoronavirus/isolation & purification , Swine/virology , Viral Zoonoses/epidemiology , Viral Zoonoses/virology , Amino Acid Sequence , Animals , Bayes Theorem , Child , Chlorocebus aethiops , Conserved Sequence , Coronavirus Infections/blood , Deltacoronavirus/classification , Deltacoronavirus/genetics , Deltacoronavirus/pathogenicity , Female , Haiti/epidemiology , Humans , Male , Models, Molecular , Mutation , Phylogeny , Vero Cells , Viral Zoonoses/blood
5.
PLoS Negl Trop Dis ; 15(6): e0009494, 2021 06.
Article in English | MEDLINE | ID: mdl-34133422

ABSTRACT

We report the identification of two orthobunyaviruses, Melao virus (MELV) and Oropouche virus (OROV), in plasma specimens from Haitian children with acute febrile illness who presented during outbreaks caused by alpha- and flaviviruses in 2014. Heretofore not described as a human pathogen, MELV was isolated in cell culture from the plasma of five case patients. OROV RNA was detected in the plasma of an additional child, using an unbiased sequencing approach, with phylogenetic inference suggesting a close relationship with strains from Brazil. Abdominal pain was reported by four case patients with MELV infections, with lymphadenopathy noted in two cases. Our findings document the occurrence of these orthobunyaviruses within the Caribbean region and highlight the critical importance of surveillance with viral genome sequence analyses to identify outbreaks caused by these and other emerging viruses.


Subject(s)
Bunyaviridae Infections/epidemiology , Orthobunyavirus/isolation & purification , Abdominal Pain , Adolescent , Bunyaviridae Infections/blood , Bunyaviridae Infections/diagnosis , Child , Child, Preschool , Communicable Diseases, Emerging/virology , Female , Genome, Viral , Haiti/epidemiology , Humans , Lymphadenopathy , Male , Orthobunyavirus/classification , Orthobunyavirus/genetics , Phylogeny , RNA, Viral/genetics
6.
Int J Infect Dis ; 108: 212-216, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33901650

ABSTRACT

OBJECTIVE: To determine if viable virus could be isolated from the air within a car driven by a patient infected with SARS-CoV-2, and to assess the size range of the infectious particles. METHODS: We used a Sioutas personal cascade impactor sampler (PCIS) to screen for SARS-CoV-2 in a car driven by a COVID-19 patient. The patient, who had only mild illness without fever or cough and was not wearing a mask, drove the car for 15 min with the air conditioning turned on and windows closed. The PCIS was clipped to the sun-visor above the front passenger seat and was retrieved from the car two hours after completion of the drive. RESULTS: SARS-CoV-2 was detectable at all PCIS stages by PCR and was cultured from the section of the sampler collecting particles in the 0.25-0.50 µm size range. CONCLUSIONS: Our data highlight the potential risk of SARS-CoV-2 transmission by minimally symptomatic persons in the closed space inside of a car and suggest that a substantial component of that risk is via aerosolized virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Automobiles , Cough , Humans
7.
medRxiv ; 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33791709

ABSTRACT

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, coronavirus emergence in our species has been associated with zoonotic transmissions from animal reservoirs 1,2 , underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae - Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus , - human infections reported to date have been limited to alpha- and betacoronaviruses 3 . We identify, for the first time, porcine deltacoronavirus (PDCoV) strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the nsp15 and the spike glycoprotein genes by convergent evolution. In particular, structural analysis predicts that one of the changes in the Spike S1 subunit, which contains the receptor-binding domain, may affect protein's flexibility and binding to the host cell receptor. Our findings not only underscore the ability of deltacoronaviruses to adapt and potentially lead to human-to-human transmission, but also raise questions about the role of such transmissions in development of pre-existing immunity to other coronaviruses, such as SARS-CoV-2.

8.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33632859

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain UF-8, with an in-frame 12-nucleotide deletion within open reading frame 3a (ORF3a), was isolated from a 78-year-old COVID-19 patient in March 2020.

9.
mSphere ; 5(5)2020 10 21.
Article in English | MEDLINE | ID: mdl-33087522

ABSTRACT

The malaria parasite, Plasmodium falciparum, was introduced into Hispaniola and other regions of the Americas through the slave trade spanning the 16th through the 19th centuries. During this period, more than 12 million Africans were brought across the Atlantic to the Caribbean and other regions of the Americas. Since malaria is holoendemic in West Africa, a substantial percentage of these individuals carried the parasite. St. Domingue on Hispaniola, now modern-day Haiti, was a major port of disembarkation, and malaria is still actively transmitted there. We undertook a detailed study of the phylogenetics of the Haitian parasites and those from Colombia and Peru utilizing whole-genome sequencing. Principal-component and phylogenetic analyses, based upon single nucleotide polymorphisms (SNPs) in protein coding regions, indicate that, despite the potential for millions of introductions from Africa, the Haitian parasites share an ancestral relationship within a well-supported monophyletic clade with parasites from South America, while belonging to a distinct lineage. This result, in stark contrast to the historical record of parasite introductions, is best explained by a severe population bottleneck experienced by the parasites introduced into the Americas. Here, evidence is presented for targeted selection of rare African alleles in genes which are expressed in the mosquito stages of the parasite's life cycle. These genetic markers support the hypothesis that the severe population bottleneck was caused by the required adaptation of the parasite to transmission by new definitive hosts among the Anopheles (Nyssorhynchus) spp. found in the Caribbean and South America.IMPORTANCE Historical data suggest that millions of P. falciparum parasite lineages were introduced into the Americas during the trans-Atlantic slave trade, which would suggest a paraphyletic origin of the extant isolates in the Western Hemisphere. Our analyses of whole-genome variants show that the American parasites belong to a well-supported monophyletic clade. We hypothesize that the required adaptation to American vectors created a severe bottleneck, reducing the effective introduction to a few lineages. In support of this hypothesis, we discovered genes expressed in the mosquito stages of the life cycle that have alleles with multiple, high-frequency or fixed, nonsynonymous mutations in the American populations which are rarely found in African isolates. These alleles appear to be in gene products critical for transmission through the anopheline vector. Thus, these results may inform efforts to develop novel transmission-blocking vaccines by identifying parasite proteins functionally interacting with the vector that are important for successful transmission. Further, to the best of our knowledge, these are the first whole-genome data available from Haitian P. falciparum isolates. Defining the genome of these parasites provides genetic markers useful for mapping parasite populations and monitoring parasite movements/introductions.


Subject(s)
Adaptation, Physiological/genetics , Anopheles/parasitology , Genetic Variation , Phylogeny , Plasmodium falciparum/genetics , Animals , Genetic Markers , Haiti , Malaria, Falciparum/parasitology , Mosquito Vectors/parasitology , Mutation , Plasmodium falciparum/classification , Plasmodium falciparum/physiology , South America , United States , Whole Genome Sequencing
10.
Int J Infect Dis ; 100: 476-482, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32949774

ABSTRACT

OBJECTIVES: Because the detection of SARS-CoV-2 RNA in aerosols but failure to isolate viable (infectious) virus are commonly reported, there is substantial controversy whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be transmitted through aerosols. This conundrum occurs because common air samplers can inactivate virions through their harsh collection processes. We sought to resolve the question whether viable SARS-CoV-2 can occur in aerosols using VIVAS air samplers that operate on a gentle water vapor condensation principle. METHODS: Air samples collected in the hospital room of two coronavirus disease-2019 (COVID-19) patients, one ready for discharge and the other newly admitted, were subjected to RT-qPCR and virus culture. The genomes of the SARS-CoV-2 collected from the air and isolated in cell culture were sequenced. RESULTS: Viable SARS-CoV-2 was isolated from air samples collected 2 to 4.8 m away from the patients. The genome sequence of the SARS-CoV-2 strain isolated from the material collected by the air samplers was identical to that isolated from the newly admitted patient. Estimates of viable viral concentrations ranged from 6 to 74 TCID50 units/L of air. CONCLUSIONS: Patients with respiratory manifestations of COVID-19 produce aerosols in the absence of aerosol-generating procedures that contain viable SARS-CoV-2, and these aerosols may serve as a source of transmission of the virus.


Subject(s)
Air Microbiology , Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pneumonia, Viral/virology , Aerosols , COVID-19 , Coronavirus Infections/transmission , Hospitals , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2
11.
medRxiv ; 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32793914

ABSTRACT

Background - There currently is substantial controversy about the role played by SARS-CoV-2 in aerosols in disease transmission, due in part to detections of viral RNA but failures to isolate viable virus from clinically generated aerosols. Methods - Air samples were collected in the room of two COVID-19 patients, one of whom had an active respiratory infection with a nasopharyngeal (NP) swab positive for SARS-CoV-2 by RT-qPCR. By using VIVAS air samplers that operate on a gentle water-vapor condensation principle, material was collected from room air and subjected to RT-qPCR and virus culture. The genomes of the SARS-CoV-2 collected from the air and of virus isolated in cell culture from air sampling and from a NP swab from a newly admitted patient in the room were sequenced. Findings - Viable virus was isolated from air samples collected 2 to 4.8m away from the patients. The genome sequence of the SARS-CoV-2 strain isolated from the material collected by the air samplers was identical to that isolated from the NP swab from the patient with an active infection. Estimates of viable viral concentrations ranged from 6 to 74 TCID50 units/L of air. Interpretation - Patients with respiratory manifestations of COVID-19 produce aerosols in the absence of aerosol-generating procedures that contain viable SARS-CoV-2, and these aerosols may serve as a source of transmission of the virus.

12.
Aerosol Air Qual Res ; 20(6): 1167-1171, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33424954

ABSTRACT

The progression of COVID-19 worldwide can be tracked by identifying mutations within the genomic sequence of SARS-CoV-2 that occur as a function of time. Such efforts currently rely on sequencing the genome of SARS-CoV-2 in patient specimens (direct sequencing) or of virus isolated from patient specimens in cell cultures. A pilot SARS-CoV-2 air sampling study conducted at a clinic within a university student health care center detected the virus vRNA, with an estimated concentration of 0.87 virus genomes L-1 air. To determine whether the virus detected was viable ('live'), attempts were made to isolate the virus in cell cultures. Virus-induced cytopathic effects (CPE) were observed within two days post-inoculation of Vero E6 cells with collection media from air samples; however, rtRT-PCR tests for SARS-CoV-2 vRNA from cell culture were negative. Instead, three other fast-growing human respiratory viruses were isolated and subsequently identified, illustrating the challenge in isolating SARS-CoV-2 when multiple viruses are present in a test sample. The complete SAR-CoV-2 genomic sequence was nevertheless determined by Sanger sequencing and most closely resembles SARS-CoV-2 genomes previously described in Georgia, USA. Results of this study illustrate the feasibility of tracking progression of the COVID-19 pandemic using environmental aerosol samples instead of human specimens. Collection of a positive sample from a distance more than 2 m away from the nearest patient traffic implies the virus was in an aerosol.

13.
Int J Infect Dis ; 87: 151-153, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31382049

ABSTRACT

Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that is being recognized with increasing frequency in South America. As part of on-going surveillance of a school cohort in Haiti, we identified MAYV infections in 5 children across a 7-month time span, at two different school campuses. All had a history of fever, and three had headaches; none complained of arthralgias. On analysis of whole genome sequence data, three strains were genotype D, and two were genotype L; phylogenetic and molecular clock analysis was consistent with at least 3 independent introductions of the virus into Haiti, with ongoing transmission of a common genotype D strain in a single school. Our data highlight the clear potential for spread of the virus in the northern Caribbean and North America.


Subject(s)
Alphavirus Infections/transmission , Alphavirus Infections/virology , Alphavirus/isolation & purification , Alphavirus/genetics , Alphavirus/physiology , Alphavirus Infections/epidemiology , Animals , Caribbean Region , Child , Child, Preschool , Culicidae/virology , Female , Genome, Viral , Genotype , Haiti , Humans , Male , Phylogeny , Travel
14.
Clin Infect Dis ; 68(6): 919-926, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30184178

ABSTRACT

BACKGROUND: Beginning in December 2013, an epidemic of chikungunya virus (CHIKV) infection spread across the Caribbean and into virtually all countries in the Western hemisphere, with >2.4 million cases reported through the end of 2017. METHODS: We monitored a cohort of school children in rural Haiti from May 2014, through February 2015, for occurrence of acute undifferentiated febrile illness, with clinical and laboratory data available for 252 illness episodes. RESULTS: Our findings document passage of the major CHIKV epidemic between May and July 2014, with 82 laboratory-confirmed cases. Subsequent peaks of febrile illness were found to incorporate smaller outbreaks of dengue virus serotypes 1 and 4 and Zika virus, with identification of additional infections with Mayaro virus, enterovirus D68, and coronavirus NL63. CHIKV and dengue virus serotype 1 infections were more common in older children, with a complaint of arthralgia serving as a significant predictor for infection with CHIKV (odds ratio, 16.2; 95% confidence interval, 8.0-34.4; positive predictive value, 66%; negative predictive value, 80%). CONCLUSIONS: Viral/arboviral infections were characterized by a pattern of recurrent outbreaks and case clusters, with the CHIKV epidemic representing just one of several arboviral agents moving through the population. Although clinical presentations of these agents are similar, arthralgias are highly suggestive of CHIKV infection.


Subject(s)
Arbovirus Infections/epidemiology , Chikungunya Fever/epidemiology , Chikungunya virus , Coinfection/epidemiology , Adolescent , Arbovirus Infections/diagnosis , Arbovirus Infections/history , Arbovirus Infections/virology , Chikungunya Fever/diagnosis , Chikungunya Fever/history , Chikungunya Fever/virology , Chikungunya virus/classification , Chikungunya virus/genetics , Child , Child, Preschool , Coinfection/diagnosis , Coinfection/history , Coinfection/virology , Dengue Virus/classification , Dengue Virus/genetics , Disease Outbreaks , Female , Geography , Haiti/epidemiology , History, 21st Century , Humans , Male , Public Health Surveillance , Schools , Seasons , Symptom Assessment , Young Adult , Zika Virus/classification , Zika Virus/genetics
15.
PLoS Negl Trop Dis ; 12(5): e0006505, 2018 05.
Article in English | MEDLINE | ID: mdl-29851952

ABSTRACT

In the context of recent arbovirus epidemics, questions about the frequency of simultaneous infection of patients with different arbovirus species have been raised. In 2014, a major Chikungunya virus (CHIKV) epidemic impacted the Caribbean and South America. As part of ongoing screening of schoolchildren presenting with acute undifferentiated febrile illness in rural Haiti, we used RT-PCR to identify CHIKV infections in 82 of 100 children with this diagnosis during May-August 2014. Among these, eight were infected with a second arbovirus: six with Zika virus (ZIKV), one with Dengue virus serotype 2, and one with Mayaro virus (MAYV). These dual infections were only detected following culture of the specimen, suggesting low viral loads of the co-infecting species. Phylogenetic analyses indicated that the ZIKV and MAYV strains differ from those detected later in 2014 and 2015, respectively. Moreover, CHIKV and ZIKV strains from co-infected patients clustered monophyletically in their respective phylogeny, and clock calibration traced back the common ancestor of each clade to an overlapping timeframe of introduction of these arboviruses onto the island.


Subject(s)
Arbovirus Infections/virology , Chikungunya Fever/epidemiology , Coinfection/epidemiology , Disease Outbreaks , Adolescent , Antibodies, Viral/blood , Arbovirus Infections/epidemiology , Arbovirus Infections/immunology , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/isolation & purification , Child , Coinfection/immunology , Coinfection/virology , Dengue/epidemiology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Female , Genotype , Haiti/epidemiology , Humans , Male , Phylogeny , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Serogroup , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/epidemiology
16.
PLoS One ; 13(5): e0196857, 2018.
Article in English | MEDLINE | ID: mdl-29746539

ABSTRACT

As part of on-going arboviral surveillance activity in a semi-rural region in Haiti, Chikungunya virus (CHIKV)-positive mosquito pools were identified in 2014 (the peak of the Caribbean Asian-clade epidemic), and again in 2016 by RT-PCR. In 2014, CHIKV was only identified in Aedes aegypti (11 positive pools/124 screened). In contrast, in sampling in 2016, CHIKV was not identified in Ae. aegypti, but, rather, in (a) a female Aedes albopictus pool, and (b) a female Culex quinquefasciatus pool. Genomic sequence analyses indicated that the CHIKV viruses in the 2016 mosquito pools were from the East-Central-South African (ECSA) lineage, rather than the Asian lineage. In phylogenetic studies, these ECSA lineage strains form a new ECSA subgroup (subgroup IIa) together with Brazilian ECSA lineage strains from an isolated human outbreak in 2014, and a mosquito pool in 2016. Additional analyses date the most recent common ancestor of the ECSA IIa subgroup around May 2007, and the 2016 Haitian CHIKV genomes around December 2015. Known CHIKV mutations associated with improved Ae. albopictus vector competence were not identified. Isolation of this newly identified lineage from Ae. albopictus is of concern, as this vector has a broader geographic range than Ae. aegypti, especially in temperate areas of North America, and stresses the importance for continued vector surveillance.


Subject(s)
Aedes/virology , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Genetic Linkage/genetics , Animals , Brazil , Caribbean Region , Chikungunya Fever/virology , Culex/virology , Female , Haiti , Humans , Insect Vectors/virology , Mosquito Vectors/virology , Mutation/genetics , North America , Phylogeny
17.
Genome Announc ; 5(47)2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29167251

ABSTRACT

Human coronavirus strain 229E (HCoV-229E) and human alphaherpesvirus 1 were isolated from the plasma of a Haitian child in 2016 with suspected arbovirus diseases. To our knowledge, this is the first description of HCoV-229E in human plasma, which is the focus of this article.

18.
Genome Announc ; 5(40)2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28983011

ABSTRACT

While data are limited, there is increasing evidence that infections by dengue viruses are endemic in Haiti. In 2014, an outbreak caused by dengue virus 4 (DENV-4) followed a chikungunya fever outbreak. We present here the complete genome sequence of one isolate grouped within the genotype II South America and Caribbean DENV-4 clades.

19.
Vet Microbiol ; 208: 89-93, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28888656

ABSTRACT

In January-April 2016, cattle and buffalo farm owners and veterinarians reported clinical signs suggestive of foot and mouth disease virus (FMDV) outbreaks among non-vaccinated cattle and buffalo herds in Egypt. The clinical disease observed was either mild (small oral lesions and speedy recovery) or severe (extensive oral lesions and/or mortalities), and the form of the disease (either mild or severe) segregated by farm. This study aimed to confirm the presence of FMDV and to characterize the circulating strains associated with the outbreaks. Vesicular epithelia were collected from 41 animals representing 15 affected cattle and buffalo farms in five governorates (Behira, Cairo, Daqahlia, Giza and Ismailia), and tested by real time (rt) RT-PCR. Consequently, 92% (38/41) of examined samples were positive. Furthermore, the VP1 coding region of 60% (23/38) of positive specimens were amplified by RT-PCR and sequenced. The phylogenetic analysis identified two distinct strains characterized as serotype O topotype EA-3 and serotype A (African topotype) of genotype IV in the severe and mild disease forms, respectively. The newly identified strains clustered in distinct clades in the phylogenetic trees, indicating the likelihood of new incursions into Egypt. Those strains were most closely related to previously described Sudanese strains.


Subject(s)
Buffaloes/virology , Cattle Diseases/virology , Disease Outbreaks/veterinary , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease/virology , Animals , Cattle , Cattle Diseases/epidemiology , Egypt/epidemiology , Foot-and-Mouth Disease/epidemiology , Serogroup
20.
Trop Med Int Health ; 22(8): 1030-1036, 2017 08.
Article in English | MEDLINE | ID: mdl-28609010

ABSTRACT

OBJECTIVES: To describe the epidemiology of malaria in pregnancy in Haiti. METHODS: Cross-sectional study among pregnant women in six departments of Haiti. After obtaining informed consent, whole blood samples and demographic surveys were collected to investigate malaria prevalence, anaemia and socio-behavioural risk factors for infection, respectively. A total of 311 pregnant women were screened for Plasmodium falciparum infection using a rapid diagnostic test (RDT), microscopy and a novel, quantitative reverse transcriptase polymerase chain reaction method (qRT-PCR). RESULTS: Overall, 1.2% (4/311) of pregnant women were tested positive for malaria infection by both microscopy and RDT. However, using the qRT-PCR, 16.4% (51/311) of pregnant women were positive. The prevalence of malaria infection varied with geographical locations ranging between 0% and 46.4%. Additionally, 53% of pregnant women had some form of anaemia; however, no significant association was found between anaemia and submicroscopic malaria infection. The socio-behavioural risk factors identified to be protective of malaria infection were marital status (P < 0.05) and travel within one month prior to screening (P < 0.05). CONCLUSION: This study is the first to document the high prevalence of submicroscopic malaria infections among pregnant women in Haiti and identify social and behavioural risk factors for disease transmission.


Subject(s)
Malaria, Falciparum/epidemiology , Plasmodium falciparum , Pregnancy Complications, Infectious/epidemiology , Adolescent , Adult , Anemia/complications , Cross-Sectional Studies , Female , Haiti/epidemiology , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Marital Status , Microscopy , Pregnancy , Pregnancy Complications, Infectious/parasitology , Prevalence , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors , Travel , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...